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ABSTRACT

We present a remote sensing observational method for the mea-
surement of the spatio-temporal dynamics of ocean waves. Varia-
tional techniques are used to recover a coherent space-time recon-
struction of oceanic sea states given stereo video imagery. The
stereoscopic reconstruction problem is expressed in a variational
optimization framework. There, we design an energy functional
whose minimizer is the desired temporal sequence of wave heights.
The functional combines photometric observations as well as spa-
tial and temporal regularizers. A nested iterative scheme is de-
vised to numerically solve, via 3-D multigrid methods, the system
of partial differential equations resulting from the optimality con-
dition of the energy functional. The output of our method is the
coherent, simultaneous estimation of the wave surface height and
radiance at multiple snapshots. We demonstrate our algorithm
on real data collected off-shore. Statistical and spectral analysis
are performed. Comparison with respect to an existing sequential
method is analyzed.
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INTRODUCTION

The study of the dynamics of oceanographic phenomena using
vision systems has a long tradition that dates back to the first
half of the previous century (Schumacher, 1939; Shemdin et al.,
1988; Holland et al., 1997), etc. This topic has gained popularity
in previous years due to the economical and practical benefits of
these systems (Santel et al., 2004; Benetazzo, 2006; Wanek & Wu,
2006; MacHutchon & Liu, 2007; Fedele et al., 2008, 2011; Hsiao &
Huang, 2009), and more recently in (de Vries et al., 2011; Bechle
& Wu, 2011; Astruc et al., 2012).

In this paper, we build upon the graph variational method pre-
sented in (Gallego et al., 2011a,b) for the stereoscopic reconstruc-
tion of oceanic sea states. The variational method for still images

was extended to process stereo video on a sequential, snapshot-
by-snapshot basis. Besides this, the variational framework also
allows for more ways to incorporate temporal coherence on the
reconstructed surface. The ultimate goal of such an observational
technique is to include the spatial and temporal physics of the
waves in the reconstruction step (Gallego, 2011). Because ocean
waves are governed by the wave equation, it would be desirable
to include such law in the estimation process. This is however, a
challenging problem. Before considering such approach, a natu-
ral way to enforce temporal coherence of the reconstructed wave
height, besides the purely sequential processing above mentioned,
is to include a temporal regularizer in our energy model and solve
the resulting variational problem. This is the object of this work
and it implies a simultaneous estimation of the unknowns (wave
height, radiance, etc.) for all snapshots in a sequence. The re-
sulting reconstruction is called a manifold reconstruction (MR)
because the developed method estimates a manifold of graphs
(wave heights or elevation maps).

THEORETICAL MODEL

In a multi-camera setup recording synchronized videos of the
ocean surface, let the video signal acquired by the i-th camera be
denoted by I;(x:,7), where x; = (z,y)' and 7 denote the (con-
tinuous) spatial and temporal variables, respectively. In reality, a
digital video signal only specifies the intensity values at discrete
locations of the space-time axes (pixels and time instants), how-
ever, it is more beneficial to model the problem in the continuum.
Following the physical model of the scene presented in (Gallego
et al., 2011a), consider the surface shape (wave height) and sur-
face radiance as functions of space and time, i.e., as 3-D functions:
Z(u,v,7) and f(u,v,7), with u = (u,v) € U and 7 € [0,7]. Re-
call that the surface radiance is a function that lives on top of the
surface and represents the “color” of the wave that is seen from
the viewpoints of the cameras. Let us denote the domain of Z
and f by Upr = U x[0,T]. Let the symbol VZ denote the gradient
of Z with respect to all variables, not only the spatial ones (u,v),



ie.
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and similarly for V f. With this notation, the three variables u, v
and 7 are treated uniformly.

Next, we define an energy functional to measure the goodness
of fit of candidate space-time functions Z and f to the observed
data (i.e., the stereo videos):

E(Z7 f) :Edata(Z7 f)+aEg90m(Z)+/6Erad(f)7 (01)

with weights a, 3 € R". Let the data fidelity term, which mea-
sures the photo-consistency throughout the video for a candidate
wave height function, be
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with

¢i = 5 (Lilxim) = f(xi,7))"
The definition of the data fidelity term as an integral over the
image domain €; (rather than over U) has two advantages: the
data term is independent of the choice of domain for the graph and
the resulting optimality conditions for the minimization of (0.1)
lack image derivatives. This desirable property is inherited from
the modeling and mathematical principles that we follow from
(Mumford & Shah, 1988). The resulting method is less sensitive
to image noise than other variational approaches for stereo 3-D
reconstruction.
Also, let the spatio-temporal regularizers on the smoothness of
the surface shape and radiance be:

(0.3)
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where dur = dudr. The new terms with respect to the still-
image case (Gallego et al., 2011a), Z2 and f2, are the source of
temporal coherence in the model.

The radiance function is an auxiliary variable with a twofold
purpose: it simplifies pairwise image-to-image comparisons with
fewer image-to-model comparisons and it also extends the influ-
ence of the point-wise photometric criterion by means of neigh-
borhood effects due to the regularizer E,,q. The latter endows
the energy functional with a global influence and improves the
robustness of the energy functional against image noise.

The data fidelity term (0.2) corresponding to the i-th camera
can also be expressed as

E; = ¢iJ; dur,
Ur

where the Jacobian J; (the geometric conversion factor between
integrals) has the same expression as in the still-image case despite
the fact that now the Jacobian is also a function of time 7 (since

J; depends on the surface shape, which is a function of time).
Therefore, the energy (0.1) can be expressed in the common and

fixed domain of integration Ur as the integrand of the so-called
Lagrangian L(Z,VZ, f,V f,u,v,T):

E = Ldur.
Ur

To minimize the proposed energy, let us compute the necessary
optimality condition, which follows from the first variation (di-
rectional derivative) of the energy with respect to the unknowns:

d
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Setting to zero the directional derivative for all admissible per-
turbations (h,w) we arrive at a coupled system of partial differ-
ential equations (PDE), the so-called Euler-Lagrange (EL) equa-
tions:

Lz —(Lz,)u—(Lz,)v — (Lz.): =0 inUr,
Lz v+ Lz v"+ Lz, v7 =0 ondUr,
Ly = (Lp)u = (Lp)o = (Lgo)r =0 inUr,
Ly v"+Lsv'+Liv" =0 ondUr.
After calculations, similar expressions to those of the still-image
optimality conditions are derived. That is why this approach is
considered a natural extension of the aforementioned still-image

case. Now, however, variables Z, f, and consequently J; and I;
depend on the new temporal variable 7:

g(Z,f)—aAZ =0 inUr, (0.6)
b(Z, ) + ag—f —0 on dUr, (0.7)
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where the non-linear terms due to the data fidelity energy have
the same expression as those of the still-image energy since the
data fidelity energy does not depend on the new derivatives Z.,

fT:
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Recall that, for the i-th camera, C; = (C},C2,C3)T is the
optical center, |M| is the product of the focal lengths and Z;
is the depth of the surface point with respect to the camera.
The 3-D Laplacians AZ = Zyy + Zvo + Z7+ and, similarly, Af
arise from the regularizing terms (0.4) and (0.5), respectively.
0% /0v = (Vx)-v is the usual notation for the directional deriva-
tive along v = (v*,v%,v7) ", the normal to the integration domain
Ur in the parameter space. Vy f is the gradient of f with respect
to the original spatial variables only. To simplify the model, we
replace (0.7) by homogeneous Neumann boundary conditions, as
in the still-image case.

Having introduced the manifold reconstruction model, let us
make it more flexible by including an extra parameter p? > 0
to control the amount of temporal regularization of the solution
relative to the amount of spatial regularization. The effect of this



parameter is the substitution of the 3-D Laplacian AZ = Z,, +
Zyy + Z++ by the weighted sum Z, + Zyo + p2ZTT7 and similarly
for Af. There are two possible interpretations to this anisotropic
diffusion operator. The simplest one is that the operator arises
by replacing the integrand in (0.4) by +(Z2 + Z2 + p*Z?), thus
using a weighted norm instead of the Euclidean norm (and simi-
larly for (0.5)). The second interpretation is that the anisotropic
diffusion operator arises by using the Euclidean norm (0.4) in a
deformed space where variable 7 is scaled by p with respect to
variables (u,v) to yield the desired non-uniform scaling of the
gradients and the Laplacians, VZ, Vf, AZ and Af.

NUMERICAL SOLUTION

An iterative method is used to find the minimum of energy (0.1)
via the solution of the coupled system of equations that arise
from the the necessary optimality condition of the energy. Ob-
serve that, for a fixed height, equation (0.8) is a linear PDE in
the radiance, which is easier to solve than the non-linear PDE in
the height (0.6) for a fixed radiance. By exploiting this asymme-
try one may devise a minimization strategy consisting of a nested
iterative scheme: an outer loop performing a gradient descent in
the height, and an inner loop implementing a direct optimization
for the radiance. The scheme is initialized by an approximate
solution, usually comnsisting of the zero height function and the
corresponding optimal radiance without regularizer (8 = 0). The
linear PDE in the radiance is faster to solve using classical station-
ary iteration methods such as Jacobi or Gauss-Seidel rather than
setting up a gradient descent equation and using time-stepping’
solvers. The PDE in the height is more complicated and it is
solved via time-stepping methods.

Numerical discretization of the PDEs is carried out using Finite
Difference Methods (FDM). Therefore, the integration domain
Ur is discretized by means of a 3-D grid. Forward differences
in fictitious time and central differences in (u,v,7) approximate
the derivatives in the PDEs. The quantity p = ph/AT can be
interpreted as the step ratio that states the relationship between
the grid steps h = Au = Av and A7 in the anisotropic space
previously mentioned.

Both updating schemes (stationary method for f and time-
stepping method for Z) are used as relaxation procedures inside
a 3-D multigrid method (Briggs et al., 2000; Trottenberg, 2000)
that approximately solves the EL equations. Multigrid methods
are the most efficient numerical tools for solving elliptic bound-
ary value problems. Each relaxation iteration implies the update
of the values of the approximate solution (either Z or f) at all
the grid points, that is, all physical time slices of the 3-D grid
are updated in the same iteration. This simultaneous process-
ing property is the main difference with respect to the sequential
scheme (Gallego et al., 2011a).

Due to the extra dimension added to the problem, memory
becomes a precious resource. Storage is required not only for the
unknowns Z and f at the different levels of multigrid, but also for
the coefficients of the linear/linearized PDEs and other temporary
variables. For the same amount of memory, in-place updating
schemes allow longer sequences of images to be processed. Full
Multigrid (Briggs et al., 2000) with zero initial condition is used to
initialize the 3-D multigrid solver. It is also possible to initialize
the iterator with the solution from a fast sequential 2-D multigrid,
possibly computed using a coarser version of the problem.

Lartificial time, not the physical time 7.

Comparison to sequential 2-D multigrid

Although the sequential and manifold reconstruction methods
(SR and MR, respectively) share a common base theoretical mod-
eling, their major difference is that SR relies on 2-D multigrid
(snapshot-wise), whereas MR is based on 3-D multigrid. A com-
parison of the speed performance between both methods is not
the focus of this work, but we discuss this topic of practical rele-
vance. In general, we may conclude in a first analysis that SR is
simpler and faster but more sensitive to noise than MR.

The two main components of any multigrid method are the
intergrid transfer operators and the smoothers to update the ap-
proximate solution. Let us compare both qualitatively for SR
and MR. On the one hand, 3-D restriction is faster than sequen-
tial 2-D restriction because each coarser level of 3-D multigrid
has roughly half the number of snapshots of the previous level,
whereas in sequential 2-D multigrid the number of snapshots re-
mains constant and maximal for all levels. On the other hand,
assuming full weighting restriction, each point in the coarse grid
requires a weighted sum of 9 points in case of 2-D restriction and
27 points in case of 3-D restriction. Thus, each point-wise 3-D re-
striction involves more neighbors and calculations than each 2-D
restriction. Similar comments apply to the prolongation opera-
tors: trilinear interpolation is applied to a smaller number of grid
points than sequential bilinear interpolation, but the former is
more expensive point-wise. For details on 2-D and 3-D inter-grid
transfer operators, see (Trottenberg, 2000).

The update of each grid point in MR is slower than the up-
date of each point in SR because the former depends on more
neighbors (temporal derivatives and 3-D Laplacian). In addition,
SR only performs full multigrid for the reconstruction of the first
snapshot (and forward propagation of the solution to initialize
the remaining snapshots), whereas MR carries out full multigrid
for all snapshots. Moreover, the artificial time step to evolve the
non-linear gradient descent PDE in the height is smaller in MR
than in SR because the former takes the minimum step over all
snapshot-wise steps of the latter. Hence, MR requires more it-
erations than SR to reach the same final, artificial time. On the
other hand, MR is more robust than SR because it is less prone to
be trapped in a local minimum caused by the poor reconstruction
of a snapshot. Errors are distributed better among all snapshots
in MR than in SR.

EXPERIMENTS

Our variational method has been tested on stereo video acquired
at an off-shore platform near the southern seashore of the Crimean
peninsula, in the Black Sea. Two cameras mounted 12 m above
the mean sea level and 2.5 m apart provide images of 1624 x 1236
pixels, acquired at a frame rate of 10 Hz.

Current implementation of the MR method requires all relevant
information (input images, processing grids, etc.) to be stored
in the computer’s main memory (RAM). Thus, the limit in the
amount of available main memory in the computer performing the
reconstruction imposes a constraint on the size of the achievable
reconstruction. For a fixed amount of memory, there is a trade-off
between the spatial and temporal sizes of the grid within the MR
method: one can either reconstruct a few snapshots with high
spatial resolution or a larger number of snapshots at a coarser
spatial resolution.

For example, in a computer with 2 GBytes of RAM, a 6-level
multigrid solver can roughly handle a reconstruction on a spatial
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Figure 0.1: Right: reconstruction of a snapshot at spatial resolu-
tions h = 2.5 cm (top) and h = 10 cm (bottom). Wave height is
pseudo-colored, from blue (low) to red (high). Left: one of the two
input images at the corresponding resolution (top: 1624 x 1236
pixels, bottom: 406 x 309 pixels), with highlighted reconstructed
region of interest.

grid of 513 x 513 points (resolution h = 2.5 cm) on 65 snapshots
of the original dataset or a reconstruction on a grid of 129 x 129
points (h = 10 cm) on 1025 snapshots of a x4 coarser version
of the images. Fig. 0.1 shows an example of the reconstructions
obtained at both spatial resolutions previously mentioned. This
figure shows that the reconstruction at the low resolution cap-
tures the gist (i.e., low spatial frequency components) of the wave
heights, thus resembling the reconstruction at the high spatial
resolution.

The MR algorithm acts on the entire sequence of images by
reconstructing pieces (sub-sequences) of consecutive snapshots.
Other coarse-to-fine strategies are also possible to ensure a smooth
transition near the temporal boundaries of the sub-sequences.

Snapshots can also be decimated in time. The linear dispersion
relation that relates spatial and temporal frequencies of waves in
deep water, k = w?/g (where k = 2/) is the wave number, w =
27 f is the angular frequency and g is the gravity acceleration),
serves as a physical criterion to choose a reasonable frame rate
for a given spatial resolution, and vice versa. For instance, in the
example with grid resolution A = 10 cm, assuming the minimum
spatial wavenumber that the algorithm reconstructs reliably is
A = 4h, the corresponding frequency of the wave is

_w _ L J2r 9 .
F= 5 T V9N T\ 2map T2 H

If this is the maximum temporal frequency that the algorithm
reconstructs reliably, the corresponding Nyquist rate (minimum
sampling rate required to avoid aliasing) is twice as much, 4 Hz,
meaning that snapshots should be at most A7 < 1/4 = 0.25
seconds apart. In the experiments, we used a smaller resolution
A7 = 0.1 s since the acquisition rate (10 Hz) allowed so, but
we could have used A7 = 0.2 s (i.e., temporal snapshot decima-
tion by a factor of 2) to achieve results with similar validity and
interpretation, albeit expanding twice the physical time interval.

Figure 0.4: Experiment I. A slice at constant 7 = 79. Size:
129 x 129 grid points. Left: surface height Z(u,v, 7o) (grayscale
encoded, from dark (low) to white (high)). Right: surface radi-
ance f(u,v,70).
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Figure 0.5: Experiment I. Manifold reconstruction at one of the
snapshots. Left: a coarse input image of the stereo pair. Center:
reconstructed wave height with p = 0.1. Right: reconstructed
wave height with p = 1.0.

Experiment 1

The MR method was tested on a sequence of 4100 consecutive
snapshots, split in sub-sequences of 1025 snapshots. A 6-level
full multigrid method with 1000 iterations per level and 1500 it-
erations at the finest level was performed, with 2 V-cycles per
iteration and one pre- and post-relaxation sweeps per level. The
weights a = 0.1 and 8 = 0.025 were empirically determined. The
initial manifold surface consisted of the zero height surface (for
all snapshots). Different values of the parameter p were tested:
p = ph/AT = {0.1,0.2,0.5,1}. Observe that the temporal co-
herence of the MR decreases as p — 0. In the limit, p = 0 is
equivalent to the reconstruction of each snapshot independently,
using full multigrid on each of them, but with a common artificial
time step.

Figs. 0.2 through 0.4 show slices of the surface height and radi-
ance functions obtained by the MR method. The computational
grid has 129 x 129 x 1025 points, with spatial and temporal res-
olutions h = 10 and A7 = 0.1 s, respectively. In particular,
the results correspond to the case p = 0.1. Observe the oscillat-
ing patterns of the ocean waves in both the height and radiance
functions of the u and v slices (Figs. 0.2 and 0.3). The radiance
function also captures the location and motion of sea foam caused
by breaking waves. Fig 0.4 gives the reconstructed surface height
and radiance for a particular snapshot of the sequence.

By visual inspection of the reconstruction (see Fig. 0.5), one
concludes that the values p = {0.5,1} are too large: temporal
derivatives are penalized too much with respect to spatial deriva-
tives, yielding a reconstructed surface shape that is very smooth
in time and does not capture the wave patterns present in the
stereo video data. Drawing an analogy with linear signal pro-
cessing, the anisotropic diffusion carried out by the (weighted)
Laplacian operator has a low-pass filtering effect: it limits the
temporal bandwidth of the output signal, thus reducing noise but
also destroying the desired wave signal.



Figure 0.2: Experiment I. A slice at constant u = wug. Top: surface height Z(uo,v,7) (grayscale encoded, from dark (low) to white
(high)). Bottom: surface radiance f(uo,v, 7). Horizontal axis is time .

Figure 0.3: Experiment I. A slice at constant v = vo. Top: surface height Z(u,vo,7) (grayscale encoded, from dark (low) to white
(high)). Bottom: surface radiance f(u,vo, 7). Horizontal axis is time 7.

Using the following formulas to measure the photometric qual-
ity of the modeled image given by the reconstructed surface at a
single snapshot,

- Basa | W 5\
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it is possible to measure the photometric quality of the modeled
images given by the reconstructed space-time surface, i.e., for
all snapshots. Table 1 compares the photometric error of the
reconstructed sequence of wave heights obtained by means of the
SR and MR methods with different values of the parameter p.
Observe that the magnitude of the photometric error is small
and very similar for all values of p, however the differences in
reconstructed surface shape are more noticeable by means of other
methods such as the statistics of the wave heights. The case
p = 0.1 is further analyzed.

A piece of the reconstructed space-time volume of wave heights,
V =Z(z,y,t), (e, x = u,y = v and t = 7) is shown in Fig. 0.6,
where the oscillating color pattern encodes the oscillating pattern
of the waves. Next, spectral and statistical analysis are applied to
validate the reconstruction obtained with the MR method, yield-
ing similar results as those in (Gallego et al., 2011a).

Applying Fourier analysis to the wave space-time volume
Z(xz,y,t), yields the 3-D spectrum Z(kz, ky,w), where frequencies
kz,ky and w are the Fourier transformed variables of x,y and ¢,
respectively. Here, w = 27 f is the angular frequency and f = f; is

Table 1: Comparison of photometric error (0.11) for several meth-
ods used to reconstruct the same coarse stereo image sequence:
the variational graph sequential method (SR) (Gallego et al.,
2011a) and the variational graph manifold method (MR).

| Method | mean | standard deviation |
Sequential 3.613 0.398
Manifold, p = 0.1 | 3.615 0.393
Manifold, p = 0.2 | 3.621 0.391
Manifold, p = 0.5 | 3.657 0.392

the linear frequency, measured in Hertzs. Similarly, fo = k. /(27)
and f, = k,/(27) are the wave numbers in units of cycles/m.
The space-time grid sampling yields the Nyquist frequencies
[fz, fu, Flmax = [A71, R At = [5c¢ycles/m, 5 cycles/m, 5Hz).
The 3-D spectrum of the reconstructed 129 x 129 x 4100 wave
height grid is computed by averaging the 3-D spectra of overlap-
ping pieces of N; = 512 snapshots selected by a Gaussian 3-D
window. A 3-D FFT with N = 512 points in each dimension
is applied to each piece, thus oversampling in space. The spec-
tral spacings are Af, = Af, = 1/(Nh) = 0.02cycles/m and
Af =1/(NAt) ~ 0.02Hz. The 3-D wave spectrum and two of
its slices (the frequency-wave number spectra w-k, and w-ky),
are shown in Figs. 0.7 and 0.8, respectively. =~ The white curve
in Fig. 0.8 corresponds to planar projections of the linear dis-
persion manifold in deep water, namely (/k2 + k2 = w?/g. At
the Crimean platform, the water depth of 30 m is regarded as
being infinite for our range of wave numbers. The shift of the en-
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Figure 0.6: Experiment I. Vertical slicing of the wave space-time
volume Z(z,y,t) showing the reconstruction for fixed z-t or y-t
planes. The wave heights Z have been pseudo-colored from blue
(low) to red (high).

ergy spectrum from the theoretical dispersion curve (Fig. 0.8)
is explained by the presence of a wave-current with velocity
vector v~ (—0.17,—0.45) m/s (Gallego et al., 2011a). The
wave-current dispersion relation is & = (w — k - v)?/g, where
k= k| = /kZ+ k2.

Time series of wave heights Z;(t) = Z(z;,xi,t) were extracted
from the reconstructed space-time wave volume by selecting vir-
tual probe points (z;, ;) in the study area U. The Fourier analy-
sis of the time series leads to the observed Power Spectral Density
reported in Fig. 0.9. The tail of the frequency spectrum decays as
f~%, which agrees with the tail of the wave-number spectrum de-
caying as k= 2° (Zakharov, 1999). Finally, the MR method shows
an improvement in the estimation of the crest-trough asymmetry
of wave heights (see Fig. 0.10).

Experiment II

We tested the MR method on the same image sequence, but with
a different grid, 33 x 33 x 4097, maintaining the same spatial
and temporal spacings (h = 10 cm and A7 = 0.1 s) so that more
snapshots are processed simultaneously at the expense of reducing
the study area on the surface of the sea. The new region of interest
is approximately 16 times smaller (10.89 m?) than the region in
Experiment T (166.41 m?) and it is located in the center of the
highlighted region in Fig. 0.1. The weights «, 8, the amount of
temporal coherence p and the parameters for the full multigrid
method are the same as those in Experiment I, except for the
number of levels in multigrid (5 instead of 6 due to the size of the
new grid).

Fig. 0.11 shows the Power Spectral Density (computed from
time series of wave heights of the reconstructed surface), whose
tail decays as f~*, as in Fig. 0.9. The larger the observed time
interval (410 s vs. 102.5 s), the better waves are resolved in the
Fourier domain, as a consequence of the uncertainty principle
(localization in time vs. localization in frequency).

Because the study area is small compared to the observed wave-
lengths, all wave heights corresponding to the same snapshot
move in unison, hence there is a high degree of correlation among
the time series. This illustrates the fact that, in the limit, as the

fx [cyclesim]
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Figure 0.7: Experiment I. Two orthogonal slices of the 3-D wave
spectrum Z(kz, ky,w) through the frequency origin. Slices corre-
spond to the values of Z(kg, ky,w) at planes k; = 0 and ky = 0.
Axes fz, fy and fi stand for k5 /(27), ky/(27) and w/(27), re-
spectively.

spatial grid size decreases and the temporal grid size increases,
the MR method acts as a remote sensing technology to extract
coherent wave heights at a single probe point. Note, however,
the flexibility in the selection of the size of the 3-D grid in the
MR method to handle different situations, exchanging spatial and
temporal resolutions, depending on whether we are interested in
resolving better spatial or temporal characteristics of the waves.

CONCLUSION AND FUTURE WORK

A variational graph manifold method for the space-time coher-
ent reconstruction of ocean waves has been discussed and devel-
oped. Due to the convenient representation of the ocean sur-
face as a height function, the incorporation of a temporal dimen-
sion is straightforward. This benefit of the graph representation
makes the reconstruction problem significantly simpler than what
it would be if the level set framework was used instead. The man-
ifold method has been tested on stereo video data from real ocean
waves at an off-shore platform in the Black Sea. The qualitative
and photometric performance of the method has been demon-
strated on a coarser version of the dataset due to memory limita-
tions of the implementation with respect to the size of the original
dataset. By design, the manifold reconstruction method is more
robust than the sequential method, at the expense of speed. In ad-
dition, it captures better some physical properties of wave heights
than the sequential method, such as the crest-trough asymmetry
of wave heights. The variational graph manifold method can be
used to study both large and small areas of the surface of the
ocean, exchanging spatial and temporal localization goals while
maintaining coherence of the estimated wave heights.

Evidence shows that the incorporation of the physics and coher-
ence in our variational method produces tangible improvements
and encourages us to continue with this line of research to achieve
better results. These insights justify the research on the assimila-
tion of the wave equation in the reconstruction process. Finally,
the manifold view developed in this paper can also be applied to
the variational disparity method in (Alvarez et al., 2002). This
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Figure 0.8: Experiment I. Slices of the 3-D wave spectrum at k, =
0 (top) and ky = 0 (bottom). Superimposed on top half of both
plots: (white curve) vertical slice of the linear wave dispersion
manifold |k| = w?/g, with w = 27 f;, and (black curve) vertical
slice of the wave-current dispersion manifold |k| = (w —k-v)?/g,
with v &~ (—0.17,—0.45) m/s. Axes fz, fy and f; stand for
k. /(2m), ky/(2m) and w/(27), respectively.
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Figure 0.9: Experiment I. Top: Omni-directional wave number
spectrum. Bottom: Normalized frequency spectrum (o2 is the
variance of the wave surface) averaged over several virtual probes
in time (blue line) and compared to the spectrum by the epipolar
method (black line) (Benetazzo, 2006).
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Figure 0.10: Empirical exceedance probabilities of wave crests and
troughs from time series extracted at virtual probes. Rayleigh and
Tayfun-Fedele theoretical models are also shown for comparison.
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Figure 0.11: Experiment II. Normalized frequency spectrum aver-
aged over several virtual probes in time. The tail of the frequency
spectrum decays as f74.

topic may be further investigated in the future.
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